If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+20n-6=0
a = 5; b = 20; c = -6;
Δ = b2-4ac
Δ = 202-4·5·(-6)
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{130}}{2*5}=\frac{-20-2\sqrt{130}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{130}}{2*5}=\frac{-20+2\sqrt{130}}{10} $
| 3x+5=5x-29 | | 9.8k-4.3-7.k=26.3 | | 2−4y=20 | | m+2=-17 | | X^2+(y+8)^2=2^2 | | (6x-1)=(5x+28)=180 | | c+32/8=6 | | 13+z/3=17 | | (5x+19)=(6x+1)=180 | | 17=z/3+13 | | 3x-73=2x-8 | | 4(x+2)+3(x+3)=0.3 | | 4(x3)+5=21 | | –23=x(+61)+(1–x)(–61) | | x-14.3=18.3 | | -6=-2+a | | 0.3/x+0.8=1.4 | | 13.5x19= | | 13.5x19=x | | (x-1)^4/3+6=10 | | -x/2+5x/3=5/4 | | 2y+5+5y-10=180 | | 2y+5+5y-10=90 | | 2x-8=3x-33 | | (x-1)^4=4096 | | -11x-42=3x^2 | | w+3.97=5.48 | | y-(-18)=-11 | | y-(-15)=-16 | | Y=-4x+80 | | 8x+3+7x+12+x=360 | | 4.7=a+3.09;a= |